skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gorai, Biswajit"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The insulin receptor (IR) and the insulin-like growth factor-1 receptor (IGF1R) are homodimeric transmembrane glycoproteins that transduce signals across the membrane on binding of extracellular peptide ligands. The structures of IR/IGF1R fragments in apo and liganded states have revealed that the extracellular subunits of these receptors adopt -shaped configurations to which are connected the intracellular tyrosine kinase (TK) domains. The binding of peptide ligands induces structural transitions in the extracellular subunits leading to potential dimerization of transmembrane domains (TMDs) and autophosphorylation in TKs. However, the activation mechanisms of IR/IGF1R, especially the role of TMDs in coordinating signalinducing structural transitions, remain poorly understood, in part due to the lack of structures of full-length receptors in apo or liganded states. While atomistic simulations of IR/IGF1R TMDs showed that these domains can dimerize in single component membranes, spontaneous unbiased dimerization in a plasma membrane having a physiologically representative lipid composition has not been observed. We address this limitation by employing coarse-grained (CG) molecular dynamics simulations to probe the dimerization propensity of IR/IGF1R TMDs. We observed that TMDs in both receptors spontaneously dimerized independent of their initial orientations in their dissociated states, signifying their natural propensity for dimerization. In the dimeric state, IR TMDs predominantly adopted X-shaped configurations with asymmetric helical packing and significant tilt relative to the membrane normal, while IGF1R TMDs adopted symmetric V-shaped or parallel configurations with either no tilt or a small tilt relative to the membrane normal. Our results suggest that IR/IGF1R TMDs spontaneously dimerize and adopt distinct dimerized configurations. 
    more » « less
  2. The insulin receptor (IR), the insulin-like growth factor-1 receptor (IGF1R), and the insulin/IGF1 hybrid receptors (hybR) are homologous transmembrane receptors. The peptide ligands, insulin and IGF1, exhibit significant structural homology and can bind to each receptor via site-1 and site-2 residues with distinct affinities. The variants of the Iridoviridae virus family show capability in expressing single-chain insulin/IGF1 like proteins, termed viral insulin-like peptides (VILPs), which can stimulate receptors from the insulin family. The sequences of VILPs lacking the central C-domain (dcVILPs) are known, but their structures in unbound and receptor-bound states have not been resolved to date. We report all-atom structural models of three dcVILPs (dcGIV, dcSGIV, and dcLCDV1) and their complexes with the receptors (μIR, μIGF1R, and μhybR), and probed the peptide/receptor interactions in each system using all-atom molecular dynamics (MD) simulations. Based on the nonbonded interaction energies computed between each residue of peptides (insulin and dcVILPs) and the receptors, we provide details on residues establishing significant interactions. The observed site-1 insulin/μIR interactions are consistent with previous experimental studies, and a residue-level comparison of interactions of peptides (insulin and dcVILPs) with the receptors revealed that, due to sequence differences, dcVILPs also establish some interactions distinct from those between insulin and IR. We also designed insulin analogs and report enhanced interactions between some analogs and the receptors. 
    more » « less
  3. null (Ed.)
    Colloidal particles fabricated with anisotropic interactions have emerged as building blocks for designing materials with various nanotechnological applications. We used coarse-grained Langevin dynamics simulations to probe the morphologies of self-assembled structures formed by lobed particles decorated with functional groups. We tuned the interactions between the functional groups to investigate their effect on the porosity of self-assembled structures formed by lobed particles with different shapes (snowman, dumbbell, trigonal planar, tetrahedral, square planar, trigonal bipyramidal, and octahedral) at different temperatures. The dumbbell, trigonal planar, and square planar shaped particles, with planar geometries, form self-assembled structures including elongated chains, honeycomb sheets, and square sheets, respectively. The particles with non-planar geometries (tetrahedral, trigonal bipyramidal, and octahedral) self-assemble into random aggregate morphologies. The structures formed by trigonal bipyramidal and octahedral particles exhibit smaller and homogeneous pores compared to the structures formed by trigonal planar and square planar particles. The porosity in self-assembled structures is substantially enhanced by the functionalization of particles. 
    more » « less